
Combination of Open Journey Planner
OJPFareRequest with TOMP-API

Research Paper

Status Draft

Version 0.9

Date of last modification May 10, 2024

Authors Diogo Ferreira (MENTZ), Matthias Günter (SBB), Markus Meier (SBB)

License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Change History

Version Status Changes by Date

0.1 Draft Initial version D. Ferreira, M. Günter 2023-06-07

0.8 Draft Added abstract, glossary,
introduction, motivation, for-
matting etc.

M. Meier 2023-08-16

0.8.1 Draft Findings S. de Konink M. Meier 2023-09-12

0.9 Release Findings by D. Ferreira M. Meier 2024-05-10

SKI+

Page 2

Abstract

Modern trip planners have powerful capabilities to compute end-to-end trip itineraries, including pub-
lic and private services. Based on preloaded service data (timetables, service times, etc.), they com-
pute reliable trip plans. However, these trip plans will often not include reliable, binding information
on fares (prices).

When travellers then want to proceed to booking, payment and usage (actual travel), they will typi-
cally want to see fares first, e.g. for a taxi ride, before committing to a given trip plan and move on to
booking.
In terms of API standards, the OJP standard should be used for trip planning; for booking, usage
and payment, TOMP-API or OSDM could become the dominant standards in the future. In between,
we see a need for APIs/services for fare information, based on the combination of OJPFareRequest
and TOMP-API /planning/inquiries endpoint.

This study investigates how OJPFareRequest and TOMP-API /planning/inquiries can be mapped
back and forth, so that fare information can be integrated into the use case sequence for trip plan-
ning, booking, travelling and paying.

We conclude that a mapping, and thus coexistence of the two standards (APIs) is possible, but some
minor, non-breaking modifications will be required, which we will propose as CRs to the respective
boards.

In a future companion paper, we will investigate the mapping of the proposed OJP 2.0 OJPAvaila-
bilityRequest on TOMP-API.

Page 3

Table of Contents

Combination of Open Journey Planner OJPFareRequest with TOMP-API 1

Change History ... 1

Abstract ... 2

1 Glossary with Terms, Abbreviations and References .. 4

2 Introduction ... 5

2.1 The Problem: A Hiatus between Planning and Booking... 5

2.2 The Bridge: OJPFareRequest and TOMP-API /planning/inquiries 6

2.3 The Focus of this Study ... 7

2.4 Use Case Sequence .. 7

2.5 The Aspect of Flexibility / Late Commit ... 8

2.6 Error Handling ... 8

2.7 Possible Partitioning and Sequence of the Use Case .. 8

3 Mapping OJPFareRequest to TOMP-API /planning/inquiries ... 11

3.1 OJPFareRequest → TOMP-API /planning/inquiries Request .. 11

3.2 Mapping /planning/inquiries response to OJPFareDelivery .. 22

3.3 Conclusions ... 32

Page 4

1 Glossary with Terms, Abbreviations and References

Abbreviation Full name, explanation and hyperlinks

CR Change Request; a proposal for a change of a given standard (new version) that
would facilitate its adoption. We intend to propose, or have already proposed, the
CRs to the boards responsible for the respective standard.

FOT Swiss Federal Office of Transport, https://www.bav.admin.ch/bav/en/home.html

MaaS Mobility as a Service, https://en.wikipedia.org/wiki/Mobility_as_a_service.

MP Mobility (Service) Provider, aka MaaS Provider. Typically, the provider of an end-
customer-facing app or webapp for mobility services (MaaS). In the following use
cases and processes, the MP acts as the client which triggers the processes.

OJP Open Journey Planner. In our context, OJP has a dual meaning:

- the term is commonly used to refer to the CEN standard Open API for Dis-
tributed Journey Planning, https://www.transmodel-cen.eu/ojp-standard.
GitHub: https://github.com/VDVde/OJP/issues.

- a Swiss trip planner funded by FTO, in service since 2022, based on the OJP
standard, https://opentransportdata.swiss/en/dataset/ojp2020.

OJPFare,

OJPFare
Request

A part of the OJP standard, regarding fare information. On GitHub:

- https://github.com/VDVde/OJP/blob/master/OJP_Requests.xsd
- https://github.com/VDVde/OJP/blob/master/OJP_Fare.xsd.

OSDM Open Sales and Distribution Model, a standard aimed at booking processes of rail
and other public transport systems, https://osdm.io.

SBB Swiss Federal Railways, largest Swiss railway operator, https://www.sbb.ch/en.

SC Service Catalogue, aka Service Directory or Service Registry. A system for look-
ing-up URLs and meta-data of service endpoint APIs of the TOs.

SKI System Tasks in Customer Information, a department at SBB tasked for data ex-
change for public transport customer information, https://oev-info.ch.

SKI+ A team at SKI supporting FOT in building a national data infrastructure for mobility
(both public and private), opentransportdata.swiss/en.

TO Transport Operator, a company offering transport services through an API. The
services may be produced either by the TO’s own infrastructure (vehicles), or by
aggregating and reselling transport services of other TOs. At the extreme, a TO
can be a broker, i.e., a comprehensive, large aggregator offering the services of
many other TOs.

TOMP-API Transport Operator to Mobility-as-a-service Provider API, an open standard for
booking of mobility services, https://tomp-wg.org. GitHub:
https://github.com/TOMP-WG/TOMP-API, API documentation:
https://app.swaggerhub.com/apis/TOMP-API-WG/transport-operator_maas_pro-
vider_api/1.5.0.

Page 5

2 Introduction

Trip planning is a fundamental service or functionality needed by travellers who want to travel using
public and/or private transport services instead of an own vehicle (car, bike). The OJP standard
defines a European (CEN) API standard for trip planning. In Switzerland, an equally named OJP
service has been introduced in 2022, funded by FOT.

For a subsequent booking, payment and usage of transport services, OJP provides no support;
other APIs such as TOMP-API or OSDM are needed.

Thus, if providers of trip-planner apps (smartphone or webapps) want to integrate booking, pay-
ment and usage functionality – in other words, provide MaaS functionality –, they will have to switch
from the OJP standard (for planning) to TOMP-API or OSDM standards (for booking).

In this study, we investigate this switch of standards from OJP to TOMP-API in detail:

- We uncover a hiatus (aka gap) between trip planning with OJP and TOMP-API, being the
lack of fare information for on-demand or private trip legs.

- We then propose a bridge for this gap, based on the combination of OJPFareRequest and
TOMP-API /planning/inquiries, and their respective mapping.

Furthermore, we believe that bridging this gap will be possible and provide a building brick for the
construction of viable MaaS systems.

2.1 The Problem: A Hiatus between Planning and Booking

2.1.1 Trip Planners

A trip planner service in a smartphone app or webapp allows travellers to plan trips with public and
private transport operators end-to-end (A to B). The service will combine trip legs of both public and
private transport services in a smart way, so that the traveller reaches the destination B efficiently
and based on some personal preferences such as convenience or price.

A trip planner algorithm performs, casually speaking, some shortest-path calculation in a network of
possible paths (transport services), to minimise parameters such as travelled distance or the time
spent. For this purpose, large volumes of data (public transport timetables, road maps, real-time
updates, etc.) are imported and pre-processed beforehand by the trip-planner.

An example of such a service, based on the OJP standard, is the equally named Swiss OJP system
funded by FOT, in service since 2022. OJP includes the entire Swiss public transport, but also some
private services such as taxis, on-demand buses or micro-mobility.

Over the years, trip planners have become more and more comprehensive and powerful. However,
for reasons of performance and scaling, these trip planners typically cannot include third-party API
calls for availability or pricing information. Featuring all public transport information of an entire coun-
try, the response time of the journey planner is in the order of hundreds of milliseconds, while a
single API request over the network towards one external system might already cost the same. A
journey planner would aim for complete integration of all availability to include or exclude the option.
As a consequence, response times would grow enormously.

2.1.2 OJP standard for trip planner APIs

The OJP standard was developed as a standard for trip planning APIs. The first major version 1.0
defines the basic trip planning service (OJPTripRequest, trip from A to B), plus extra services for
exchange points, fares, multipoint trips, place information, stop events, and trip information.

Page 6

OJP 1.0 does not support the subsequent steps of availability, booking request, booking, trip execu-
tion, payment, and fulfilment. For these subsequent steps, different API standards need to be used,
such as TOMP-API or OSDM.

The release of the new major version OJP 2.0 is expected in summer 2024. OJPAvailablityRequest
will be added to provide service-availability information. This may be seen as a step in the direction
of booking services. Currently (as of spring 2024), however, there are no plans to actually add book-
ing functionality to OJP.

Thus, for booking, a different standard needs to be used. The main candidates for this purpose are,
in our opinion, the TOMP-API and OSDM standards. In this study, we investigate the TOMP-API
variant.

2.1.3 Booking with TOMP-API

TOMP-API, in contrast to OJP, aims at the subsequent booking. It provides two closely related
endpoints:

 /planning/inquiries provides a non-binding, informative offer that may include fare infor-
mation, but which is not mandatory1.
This endpoint should have short response times and tolerate heavy load (many requests).

 /planning/offers provides a binding, bookable offer with a booking id2. Depending on the
internal planning system of the service provider, a call to this service could already trigger
reservation and allocation of resources (e.g., a vehicle or driver) for the leg and keep the
reservations alive for a given time (e.g. 2 minutes). “fare” is not a mandatory attribute in the
given data structure, but in a reasonable implementation, it will have to be provided, other-
wise travellers will not want to book an offer.
Due to these extra functionalities (reservation, resource allocation and fare calculation), this
endpoint will typically be slower and not suitable for heavy load.

2.1.4 The Hiatus: Lack of Fare information in OJPTripRequest (OJPTripDelivery)

Thus, the hiatus between OJP trip planning and TOMP-API booking is about fares: The
OJPTripDelivery will typically not include reliable fare information for private legs, but before pro-
ceeding to booking of a leg with TOMP-API endpoints, the travellers will want to see reliable, bind-
ing fare information first.

2.2 The Bridge: OJPFareRequest and TOMP-API /planning/inquiries

The solution approach here is to integrate fare information in the trip planning where needed, typi-
cally when the travellers navigate to the “details views” in their trip planner apps.

Fare information can be obtained from corresponding API services of the transport operators.
Within the OJP standard, OJPFareRequest is the standard of choice for this.

However, a private operator, e.g. a taxi broker or a sharing operator, may be providing TOMP-APIs
only. As discussed above, to allow for short response times and heavy load, the normal implemen-
tation would be with TOMP-API /planning/inquries.

1 In Switzerland, an implementation of /planning/inquries which also returns an indicative price is
strongly suggested for mobility providers.
2 An offer id will be passed to the client system with OJP 2.0 .

Page 7

We strongly recommend that /planning/inquiries should include the fare information, otherwise API
clients who need fares might be forced to use the /planning/offers endpoint. In the remainder of
this study, our focus is on /planning/inquiries, assuming that it does include fares.

Thus, the mapping between OJPFareRequest and TOMP-API /planning/inquries may become a
necessity, or, in other words, the bridge across the gap.

2.3 The Focus of this Study

In this study, we thus focus on the OJP Fare service (OJPFareRequest) for travel-fare information,
as a key to bridging the gap between the preceding trip planning step and the subsequent booking
steps. With the fare service, trip plans can be completed with fare information, so that the travellers
feel confident to commit to a trip plan and move on to booking.

We focus on the interaction of the respective standards:

- OJPFareRequest, which, as a member of the OJP standards family, fits well in combination
with OJPTripRequest.

- TOMP-API /planning/inquiries endpoint, which is intended to provide fast information
(non-binding offers), including fare information as well.

In the future, both OJPFareRequest and TOMP-API /planning/inquiries may be used in parallel, and
in some use case scenarios, there may be a need for adapters or converters mapping from one to
the other.

Thus, we investigate the mapping between these two standards, both requests and responses, and
provide some illustrative examples for both.

2.4 Use Case Sequence

Our study subject is the use case sequence of trip planning, fare calculation and booking:

1. Trip planning (OJPTripRequest) comprises the traveller's steps to find a suitable trip itiner-
ary from A to B.

2. Fare calculation (OJPFareRequest) will provide important fare information to the trip plans
so that the traveller can decide for one given trip plan.

3. Booking: To commit and actually travel based on the trip plan, booking APIs (TOMP-API
/planning/offers and /bookings) must be called with the right parameters.

In more detail, the use case sequence comprises these steps:

1. Trip planning A to B with OJPTripRequest, presenting a handful of proposals for trip itiner-
aries to the traveller. Each itinerary consists of one or several trip legs with various public or
private transport operators. The trip plan must include all relevant travel information such as
transport operators, times and locations for boarding and alighting, and routes.

2. Fare calculation: When requested by the traveller (e.g., when opening the details view on
an itinerary), fare calculation for the respective legs should be triggered. This requires sepa-
rate API calls for all legs where a fare is applicable – usually, all legs of type TimedLeg and
of type ContinousLeg that are not an “own vehicle mode”. These steps consist of:

a. Look-up of the OJPFare service endpoint in the service catalogue for a given leg.
b. If it exists, call the endpoint to obtain the applicable fare.
c. Integrate the fare details into the trip plan of step 1 and display them to the traveller.

3. When the traveller decides for a trip plan (all legs, or parts of it), e.g. by clicking a “book
now” button, continue with the booking API calls. This requires a check-and-confirm step

Page 8

of the traveller per leg, and will typically proceed leg by leg, starting with leg 1, etc.
In case of a TOMP-API:

a. Look-up of the endpoints for a given leg in the service catalogue.
b. Call /planning/offers endpoint of the operator to get a binding offer (including a

price/fare which is ideally the same as in step 2 but may differ). Display the offer to
the traveller.

c. When the traveller confirms, e.g., by clicking on a “buy now” button, call /booking
endpoint.

2.5 The Aspect of Flexibility / Late Commit

Many travellers will prefer to remain flexible as much as possible. They will want the trip planner to
give them precise and reliable information on possible itineraries for a trip end to end, but often,
they will not want to really commit to a plan end-to-end.

They will prefer to commit themselves to a given trip leg, e.g., a taxi ride, only shortly beforehand,
when they are sure they can actually make it.

Thus, trip plans must be precise and comprehensive, but the traveller may want to book only the
first part of it and do a replanning later.

In other words, the respective systems must allow for single and multi leg bookings.

2.6 Error Handling

Several errors and exceptions may occur:

- Fare or booking endpoints may be unavailable.
- A trip plan may have proposed a trip itinerary with some (hypothetical) legs, e.g., with a taxi

service, but the respective calls to the fare or booking endpoint then fails (no fare information
available, no binding offer available, etc.)

The traveller must be informed accordingly and will typically start over with a fresh trip plan for the
full trip A to B, or part of it.

2.7 Possible Partitioning and Sequence of the Use Case

As discussed above, the use case sequence of planning, fare calculation and booking comprises a
number of steps, some of which iteratively, and with various actors.

Various variants may occur and are depicted in the following sequence diagrams.

Page 9

Figure 1: In variant 1, the client (traveller’s app, MaaS app) does all the orchestration work.

Figure 2: In variant 2, an endpoint by a TO does the orchestration work.

Page 10

Figure 3: In variant 3, a central enabler does the transformation and orchestration work.

Page 11

3 Mapping OJPFareRequest to TOMP-API /planning/inquiries

After trip planning, some of the legs of a given trip itinerary need to be booked. In the chain of
exchange standards, this means a change from the OJP standard to TOMP-API or another standard
for distribution, such as OSDM, as illustrated in figure 4.

Figure 4: Sequence diagram of the relevant parts of the process3.

The following sections 3.1 and 3.2 describe the values which can be used in an OJPFareRequest
(request and response) and the corresponding mapping on elements in a TOMP-API /planning/in-
quiries request and response.

3.1 OJPFareRequest → TOMP-API /planning/inquiries Request

OJPFareRequest has four different sub-variants: StopFareRequest, StaticFareRequest, TripFare-
Request and MultiTripFareRequest. We investigate the mapping with TripFareRequest here.

For more details, please refer to the API documentations and GitHub hyperlinks in the glossary.

Table 1: Mapping from OJP TripFareRequest to TOMP-API /planning/inquiries request.

OJP TripFareRequest - Request TOMP-API /planning/inquiries -
Request

Remarks

OJP.FareResponse.FareRe-
sult.TripFareResult.ErrorMes-
sage.Code

HTTP status code OK

3 For more details on the OJP and TOMP-API standard in general, please refer to the documentation
hyperlinks in the introduction.

Page 12

OJP.FareResponse.FareRe-
sult.TripFareResult.Er-
rorMessage.Text.Text

HTTP status message OK

OJP.FareResponse.FareRe-
sult.TripFareResult.Er-
rorMessage.Text.TextId

n/a OK

OJP.OJPFareRequest.TriPFare-
Request.Trip TripStructure

from/to Structure of the trip that is used
to build the from/to for each
TOMP-API request.

Be aware that this typically will be
split into multiple TOMP-API re-
quests, one per leg.

In TOMP-API, the request only
provides “from” and to”. How-
ever, namely for public transport,
the whole trip (structure) would be
better.

In Switzerland, the pricing service
(NOVA) needs all intermediate
stops as well.

Currently, we could add the Trip-
Structure as an extension in ex-
traInfo in the Swiss Profile for
TOMP-API, but a general, stand-
ard solution would be better.

Page 13

OJP.OJPFareRequest.TriPFare-
Request.TripLeg.LegStart/Leg-
End.Choic

 StopPointRef (NMToken): the
logical stop element (may be
on the level of a STOP PLACE
or QUAY)

 StopPlaceRef (normal-
izedString): The physical stop
element

 GeoPosition (siri:Location-
Structure): The coordinates as
WGS84

The following Types should be ig-
nored in OJPFare in Switzerland:

 TopographicPlaceRef

 PointOfInterestRef

 AddressRef

from/to.stopReference.type
ENUM:

 GTFS_STOP_ID
 GTFS_STOP_CODE
 GTFS_AREA_ID
 CHB_STOP_PLACE

_CODE
 CHB_QUAY_CODE
 NS_CODE

from/to.place.stopReference.id: ex-
amples:

 NL:S:13121110
 BE:S:79640040

from/to.place.stopReference.coun-
try (two-letter country codes ac-
cording to ISO 3166-1). Example:
NLCH

StopReference Object in TOMP-
API is optional. If the data is used
in OJPFare, it should be filled
out. The Swiss TOMP-API Profile
intends to always provide the co-
ordinates.

1. Documentation on TOMP-
API: "reference to a stop (can
be nation specific). This can
help to specific pinpoint a
(bus) stop. Extra information
about the stop is not supplied;
you should find it elsewhere."

2. The ENUMs of stopRefer-
enceType are not explained.
We had to make some as-
sumptions.

Mapping:

 StopPointRef →
CHB_QUAY_CODE

 StopPlaceRef →
CHB_STOP_PLACE_
CODE

 Currently the DIDOK is used
for the stopReference.id

CR TOMP-API: add a docu-
mentation for the ENUMs.

CR TOMP-API: changing this
enumeration altogether?

OJP.OJPFareRequest.TripFare-
Request.TripLeg.Service.Opera-
torRefs

n/a The OperatorRefs are the keys for
the lookup of endpoints in the
service catalogue. The must be
used to get the end point.

If an end point serves for several
operators, the query parameter
addressed-to should be used.

CR TOMP-API: operators
could be added for systems that
serve more than one operator.

Page 14

n/a from/to.stationId

Documentation on TOMP-API:
"reference to operator/stations".
The stations describe the pickup
spots of the vehicles (e.g.
eScooter stations). The id is not
mandatory in TOMP-API, though.
Coordinates are and should do
the job instead. See remarks
there (next row).

Not needed.

Possibilities to get the coordi-
nates *

1. OJP.OJPFareRequest.
TripFareRequest.Tri-
pLeg.LegStart/LegEnd.Call-
Place.GeoPosition.Longitude

2. Client uses OJP.LocationInfor-
mationRequestto get GeoLo-
cation

3. Server is able to search for
GeoPosition using the Refer-
ences (StopPointRef, Stop-
PlaceRef,
TopographicPlaceRef, Poin-
tOfInterestRef, AddressRef)

from/to.coordinated.lng

from/to.place.coordinated.lat

No coordinate information in
OJPFares if the CallPlace is not of
type GeoPosition. Perhaps from
the TripContext or obtained by us-
ing OJP Location Information ser-
vice.

1. The client should always send
coordinates to a TOMP-API
system.

2. It is therefore crucial that this
information can be added at
some point.

3. Using stopReference.type and
stopReference.id might be
needed nevertheless for opti-
mal response.

CR OJP: OJP should consider
adding TripContext to OJPFare so
that doing LIR in the converter is
not needed.

Remark: FareResponseContext
added in OJP 2.0.

n/a from/to.place.coordinates.alt No altitude element in OJP.

Possible use-cases:

 Operator wants to use altitude
difference from start to stop
point for fare price calculation
(example: eScooter uses
more energy to get up a hill).

 Navigation/routing in buildings
with multiple levels/storeys.

Not supported.

n/a from/to.place.physicalAddress Mapping AddressRef in OJP to
phyiscalAddress in TOMP-API is
hardly possible, as AddressRef is
a normalizedString, while physi-
calAddress is a structure.

Not supported.

Page 15

n/a radius TOMP-API doc.: "Maximum dis-
tance in meters a user wants to
travel to reach the travel option."

Is only of interest to define a trip.
When asking for a fare, the trip
has already been defined. Not
needed with OJPFares.

Not supported.

OJP.OJPFareRequest.TripFare-
Request.Trip[n].Distance

OJP.OJPFareRequest.TripFare-
Request.Trip.Timed-
Leg.LegTrack.TrackSec-
tion.Length

estimatedDistance Documentation for estimated-
Distance on TOMP-API: "instead
of using the from/to construct, it is
also possible to give an indication
of the distance to travel. The pro-
cess identifier 'USE_ESTI-
MATED_DISTANCE' is used to in-
dicate this scenario. Also in me-
ters".

In OJP, this means that per leg, a
LegTrack.TracSection must exist
with the element LENGTH.

If an operator wants to create a
fare price for a distance without
having the need to do the routing
himself, OJP should provide such
information.

CR OJP: consider to add this
feature (distance instead of a
given from/to route) in OJP.

OJP.OJPFareRequest.TripFare-
Request.Trip.TripLeg.Timed-
Leg/ContinuousLeg.Leg.Ser-
viceDeparture.TimetabledTime

departureTime OK

OJP.OJPFareRequest.TripFare-
Request.Trip.TripLeg.Timed-
Leg/ContinuousLeg.Leg.Ser-
viceArrival.TimetabledTime

arrivalTime OK

OJP.OJPFare-
Request.Params.Traveller

nrOfTravelers No element for number of travel-
lers in OJP. Would need to be cal-
culated from the number of travel-
ler elements (or set to 1, if not
available).

Travellers is always set to 1.

OJP.OJPFare-
Request.Params.Traveller.Age

travelers.traveler.age OK.

Set to 20, if no Traveller exists.

Page 16

n/a travelers.traveler.isValidated information if the travellers identity
and properties have been verified
by the MaaS provider.

Not needed.

CR OJP: Check if OJP might
need this for OJP 2.0.
Remark: It was decided that OJP
is not for booking and does not
convey “private” information, this
should not be part of OJP 2.0.

n/a travelers.traveler.referenceNumber No referenceNumber of traveller
found in OJP Fares. Would only
work with a global refer-
enceNumber, where a passenger
would have the same number for
every operator?

Not needed.

It was checked whether OJP 2.0
could do this. However, as OJP
does not deal with personal infor-
mation, it was agreed to not add
such an element.

Page 17

OJP.OJPFareRequest.Params.En-
titlementProduct:

Doc: [a specific form of TRAVEL
DOCUMENT in TM and NeTEx] a
precondition to access a service or
to purchase a FARE PRODUCT
issued by an organisation that may
not be a PT operator (eg: military
card, concessionary card, etc) Is of
type NMTOKEN.

AND

OJP.OJPFare-
Request.Params.Traveller.Pas-
sengerCategory: Doc: sequence of
all passenger categories, for which
this FareProduct is valid. Enum
Adult, Child, Senior, Youth, Disa-
bled.

AND

OJP.OJPFare-
Request.Params.SalesPackageEl-
ementRef: Doc: Id of a Fare-
Product that the passenger al-
ready holds and that may be used
for the travel or parts of it. Is of
type NMTOKEN.

travelers.traveler.cardTypes
cardTypeStructure: TOMP-API
documentation on cardTypeStruc-
ture: "A generic description of a
card, asset class and acceptors is
only allowed for DIS-
COUNT/TRAVEL/OTHER cards.
Card types: [ID, DISCOUNT,
TRAVEL, BANK, CREDIT, PASS-
PORT, OTHER]

type Enum:
[ID, DISCOUNT, TRAVEL, BANK,
CREDIT, PASSPORT, OTHER]

subType string
For use in case of OTHER. Can be
used in bilateral agreements.

assetClass
These classes are taken from the
NeTEx standard, but ALL and UN-
KNOWN are removed. On the
other hand OTHER and PARKING
are added.

Enum:
[AIR, BUS, TROLLEYBUS,
TRAM, COACH, RAIL, INTER-
CITYRAIL, URBANRAIL, METRO,
WATER, CABLEWAY, FUNICU-
LAR, TAXI, SELFDRIVE, FOOT,
BICYCLE, MOTORCYCLE, CAR,
SHUTTLE, OTHER, PARKING,
MOPED, STEP]

acceptors [
references to accepting parties,
only if applicable"

cardTypes could be used by the
operator to define fare products.

Of the OJP Elements, Entitle-
mentProduct and PassengerCat-
egory fit this narrative, although
they are only defined as NMTO-
KEN or ENUM values and do not
provide the granularity of TOMP-
API.

Also: EntitlementProduct is cur-
rently not defined by traveller, but
for the whole request.

will need further study.

n/a travelers.traveler.licenseType: li-
censeTypeStructure

Describes the licences a traveller
has to use specific vehicle types
(car, etc.). NO OJP Fares element
to forward this data.

Not needed for fare information
but must be added for the availa-
bility requests.

not needed here.

Page 18

n/a travelers.traveler.requirements

requirementsStructure

Requirements from the end user
side.

source string
if obsolete, it is referencing the
travellers' dictionary
(https://github.com/TOMP-
WG/TOMP-API/blob/master/docu-
ments/CROW%20passen-
ger%20characteristics.xlsx)

category* string
references to the first column of
the specification initial values [HR,
AV, HV, AB, AER, K, ZR, RR]

number* string
minLength: 2
maxLength: 2
references to the second column
of the specification

type string
conditionally extra information, ref-
erencing to the 3rd column

memo string
extra field for detailed information,
not standardized.

Not needed to get fare infor-
mation.

not needed.

n/a travelers.traveler.knownIdentifier:
identifier for this traveler in the per-
sonal data store. This identifier can
be used to get personal infor-
mation from the provider specified
in the "knownIdentifierProvider"

Not needed for fare information

not needed.

n/a travelers.traveler.knownIdentifi-
erProvider: provider for personal
information. Can be a URI or iden-
tifier.

Not needed for fare information

not needed.

OJP.OJPFare-
Request.Params.ZonesAlradyPaid

n/a No concept found in /planning/in-
quiries to take into account when
a zone has already been paid.

not needed.

n/a useAssets: The specific asset(s)
the user wishes to receive leg op-
tions for

Not needed for fare information

not needed.

Page 19

n/a userGroups: Id(s) of user groups
that the user belongs to. This pro-
vides access to exclusive assets
that are hidden to the public. Id's
are agreed upon by TO and MP.

Not needed for fare information.

not needed.

n/a useAssetTypes: The specific asset
type(s) the user wishes to receive
leg options for

Not needed for fare information.

not needed.

3.1.1 Example OJPFareRequest

On the following pages, an example of an OJPFareRequest is shown.

The example is rather large for a request, mainly because the whole trip structure must be sent to
the service. OJP services are stateless, thus, no prior query results or other state information is
cached on the server.

In contrast, TOMP-API services are stateful. Bookings objects are cached on the server, and refer-
ring to a booking-id will be enough to bring up the booking object again.
<?xml version="1.0" encoding="UTF-8"?>
<OJP xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.siri.org.uk/siri"
xmlns:ojp="http://www.vdv.de/ojp" version="1.1-dev" xsi:schemaLoca-
tion="http://www.siri.org.uk/siri ../../../OJP.xsd">
 <OJPRequest>
 <ServiceRequest>
 <RequestTimestamp>2020-01-19T12:00:00Z</RequestTimestamp>
 <RequestorRef>MyClient</RequestorRef>
 <ojp:OJPFareRequest>
 <RequestTimestamp>2020-01-19T12:00:00Z</RequestTimestamp>
 <MessageIdentifier>231231-231</MessageIdentifier>
 <ojp:TripFareRequest>
 <ojp:Trip>
 <ojp:Id>192391231</ojp:Id>
 <ojp:Duration>PT55M</ojp:Duration>
 <ojp:StartTime>2020-01-19T12:00:02Z</ojp:StartTime>
 <ojp:EndTime>2020-01-19T12:57:00Z</ojp:EndTime>
 <ojp:Transfers>1</ojp:Transfers>
 <ojp:Leg>
 <ojp:Id>1231123</ojp:Id>
 <ojp:ContinuousLeg>
 <ojp:LegStart> <!-- TOMP-API is leg based -> consider the relevant leg -->
 <ojp:GeoPosition> <!-- the position is one of the crucial elements -->
 <Longitude>5.1</Longitude>
 <Latitude>20.1</Latitude>
 </ojp:GeoPosition>
 <ojp:Name>
 <ojp:Text>Origin</ojp:Text>
 </ojp:Name>
 </ojp:LegStart>
 <ojp:LegEnd>
 <ojp:GeoPosition>
 <Longitude>5.2</Longitude> <!-- crucial -->
 <Latitude>20.2</Latitude>
 </ojp:GeoPosition>
 <ojp:Name>
 <ojp:Text>Destination</ojp:Text>
 </ojp:Name>
 </ojp:LegEnd>
 <ojp:Service>
 <ojp:ContinuousMode>demandResponsive</ojp:ContinuousMode>

Page 20

 <ojp:OperatingDayRef>2023-12-24</ojp:OperatingDayRef> <!-- crucial -->
 <VehicleRef>ch:1:vehicle:31231:12311</VehicleRef> <!-- crucial -->
 <ojp:JourneyRef>ch:1:sjyid:12931231</ojp:JourneyRef> <!-- crucial -->
 <LineRef>ch:1:slnid:1231912</LineRef>
 <DirectionRef>ch:1:direction:H</DirectionRef>
 <ojp:Mode>
 <ojp:PtMode>bus</ojp:PtMode>
 <BusSubmode>demandAndResponseBus</BusSubmode>
 </ojp:Mode>
 <ojp:PublishedServiceName>
 <ojp:Text>Mybuxi</ojp:Text>
 </ojp:PublishedServiceName>
 <ojp:OperatorRefs>
 <ojp:OperatorRef>ch:1:sboid:1023123</ojp:OperatorRef>
 </ojp:OperatorRefs>
 <ojp:BookingArrangements>
 <ojp:BookingArrangement>
 <ojp:BookingUrl>
 <ojp:Label>
 <ojp:Text>MyBuxi</ojp:Text>
 </ojp:Label>
 <ojp:Url>https://mybuxi.ch/booking</ojp:Url>
 </ojp:BookingUrl>
 </ojp:BookingArrangement>
 </ojp:BookingArrangements>
 </ojp:Service>
 <ojp:Duration>PT15M</ojp:Duration>
 </ojp:ContinuousLeg>
 <ojp:EmissionCO2>
 <ojp:KilogramPerPersonKm>0.1</ojp:KilogramPerPersonKm>
 </ojp:EmissionCO2>
 </ojp:Leg>
 <ojp:Leg>
 <ojp:Id>8182381231</ojp:Id>
 <ojp:TransferLeg>
 <ojp:TransferMode>walk</ojp:TransferMode>
 <ojp:LegStart>
 <ojp:GeoPosition>
 <Longitude>5.2</Longitude>
 <Latitude>20.2</Latitude>
 </ojp:GeoPosition>
 <ojp:Name>
 <ojp:Text>Destination</ojp:Text>
 </ojp:Name>
 </ojp:LegStart>
 <ojp:LegEnd>
 <StopPointRef>ch:1:sloid:3000:7</StopPointRef>
 <ojp:Name>
 <ojp:Text>Bern, Gleis 7</ojp:Text>
 </ojp:Name>
 </ojp:LegEnd>
 <ojp:Duration>PT2M</ojp:Duration>
 </ojp:TransferLeg>
 </ojp:Leg>
 <ojp:Leg>
 <ojp:Id>1231123</ojp:Id>
 <ojp:TimedLeg>
 <ojp:LegBoard>
 <StopPointRef>ch:1:sloid:3000:7</StopPointRef>
 <!-- example where it could be based on a stop -->
 <ojp:StopPointName>
 <ojp:Text>Bern, Gleis 7</ojp:Text>

Page 21

 </ojp:StopPointName>
 <ojp:ServiceDeparture>
 <ojp:TimetabledTime>2020-01-19T13:02:00Z</ojp:TimetabledTime>
 </ojp:ServiceDeparture>
 </ojp:LegBoard>
 <ojp:LegAlight>
 <StopPointRef>ch:1:sloid:7000:33</StopPointRef>
 <ojp:StopPointName>
 <ojp:Text>Zürich HB, Gleis 33</ojp:Text>
 </ojp:StopPointName>
 <ojp:ServiceArrival>
 <ojp:TimetabledTime>2020-01-19T13:57:00Z</ojp:TimetabledTime>
 </ojp:ServiceArrival>
 </ojp:LegAlight>
 <ojp:Service>
 <ojp:OperatingDayRef>2023-01-24</ojp:OperatingDayRef>
 <ojp:JourneyRef>ch:1:sjyid:11:182391231</ojp:JourneyRef>
 <LineRef>ch:1:slnid:11:8</LineRef>
 <ojp:Mode>
 <ojp:PtMode>rail</ojp:PtMode>
 <RailSubmode>highSpeedRailService</RailSubmode>
 </ojp:Mode>
 <ojp:PublishedServiceName>
 <ojp:Text>IC8</ojp:Text>
 </ojp:PublishedServiceName>
 <ojp:OperatorRefs>
 <ojp:OperatorRef>ch:1:sboid:100011</ojp:OperatorRef>
 </ojp:OperatorRefs>
 <ojp:DestinationText>
 <ojp:Text>Romanshorn</ojp:Text>
 </ojp:DestinationText>
 </ojp:Service>
 </ojp:TimedLeg>
 </ojp:Leg>
 </ojp:Trip>
 </ojp:TripFareRequest>
 <ojp:Params>
 <ojp:FareAuthorityFilter>ch:1:NOVA</ojp:FareAuthorityFilter>
 <ojp:PassengerCategory>Adult</ojp:PassengerCategory>
 <ojp:TravelClass>second</ojp:TravelClass>
 <ojp:Traveller>
 <ojp:Age>25</ojp:Age>
 </ojp:Traveller>
 </ojp:Params>
 </ojp:OJPFareRequest>
 </ServiceRequest>
 </OJPRequest>
</OJP>

3.1.2 Example of a resulting TOMP Request (for the ContinuousLeg)

Of the given OJP TripFareRequest example, only the information in the ContinuousLeg (a demand-
responsive bus service named “Mybuxi”) and a tiny amount of information for the parameters are
used.

According to the use case sequence discussed above, the TOMP-API endpoint will be looked up
first in the service catalogue. The lookup key will be either the PublishedServiceName (“Mybuxi”)
or the OperatorRefs (“ch:1:sboid:1023123”, which is a Swiss Business Organisation ID).

In the subsequent call to the /planning/inquiries endpoint, the following JSON payload would be
posted. The same key would be added as a query parameter “addressed-to”.

Page 22

{
 "from": {
 "coordinates": {
 "lng": 5.1,
 "lat": 20.2
 }
 },
 "to": {
 "coordinates": {
 "lng": 5.2,
 "lat": 20.2
 }
 },
 "departureTime": "2020-01-19T12:00:02Z",
 "arrivalTime": "2020-01-19T12:57:02Z",
 "nrOfTravelers": 1,
 "travelers": [
 {
 "age": 25,
 }
],
 "extraInfo": {
 "additionalProp1": {}
 }
}

In the case of a TimedLeg, the "from" element would also contain the stopPreference and/or sta-
tionId.

Additional context can be stored in extraInfo, the given extension point. Any JSON object may be
added here, including the trip structure, if desired. However, any data added here is not defined by
the TOMP-API specification.

3.2 Mapping /planning/inquiries response to OJPFareDelivery

The following table analyses the mapping from TOMP-API to OJP response.

TOMP-API may respond to the request for a single "leg" with an array of legs. All FOOT legs are
ignored and only the bookable legs are sent back in the OJPFareDelivery. The client then has to
integrate the legs with new footpaths into the whole trip. This may cause problems and require a
re-calculation.

Table 2: Mapping from TOMP-API /planning/inquiries Response to OJPFareDelivery.

TOMP-API /planning/inquiries
Response

OJPFareDelivery Remarks and Actions

error.errorcode (http) OJP.FareResponse.Fare-
Result.TripFareResult.Er-
rorMessage.Code

OK

Page 23

error.detail (http) OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Er-
rorMessage.Text.Text

OK

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Er-
rorMessage.Text.TextId

not found in TOMP-API.

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareRe-
sult.FromTripLegId

Doc: Identifies the "valid
from" trip leg.

If the goal is to provide a fare over multiple
legs, this element should be added in
TOMP-API.

TOMP-API may return multiple legs. They
must be integrated in a correct way into the
trip before sending it back. Considered
practice is to omit FOOT legs and assume
that they are to be recalculated/checked by
the client.

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.ToTri-
pLegId

Doc: Identifies the "valid to"
trip leg.

If the goal is to provide a fare over multiple
legs, this element should be added in
TOMP-API.

TOMP-API may return multiple legs. They
must be integrated in a correct way into the
trip before sending it back. Considered
practice is to omit FOOT legs and assume
that they are to be recalculated/checked by
the client.

 currently not needed.

n/a OJP.FareResponse.Fare-
Result.TripFareResult.Pas-
sedZones

Element for passedZones does not exist in
TOMP-API.

 currently not needed.

options.booking.id

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductId

Typ= NMToken

Even though an id is available in the TOMP-
API structure, no id is sent in the /plan-
ning/inquiries response usually, and it is dis-
couraged in the documentation. If it is pro-
vided, it should be put into the BookingId in
OJP.OJPFareDelivery.FareResult (in OJP
2.0)

Page 24

pricing.fare.parts.farePartStruc-
ture: Documentation: "this de-
scribes a part of the fare (or dis-
count). It contains a for instance
the startup costs (fixed) or the
flex part (e.g. 1.25 EUR per 2.0
MILES). The amount is tax in-
cluded. In case of discounts, the
values are negative. With 'MAX'
you can specify e.g. a maximum
of 15 euro per day. Percentage
is mainly added for discounts.
The scale properties create the
ability to communicate scales
(e.g. the first 4 kilometres you've
to pay EUR 0.35 per kilometre,
the kilometres 4 until 8 EUR 0.50
and above it EUR 0.80 per kilo-
metre)."

pricing.fare.parts.farePart.name OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductName

OK

Pricing can be set in TOMP-API on the leg
and on the booking. It is considered good
practice by a TOMP-API service to fill in
both.

pric-
ing.fare.parts.farePart.amount

type: float

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductPrice-
Group.Price

type: decimal

OK

pric-
ing.fare.parts.farePart.amoun-
tExVat

type: float

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductPrice-
Group.NetPrice

type: decimal

OK

pricing.fare.parts.farePart.cur-
rencyCode

ISO 4217 currency code

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductPrice-
Group.Currency

ISO 4217 currency code

OK

Page 25

pric-
ing.fare.parts.farePart.vatRate

type: float

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductPrice-
Group.VatRate

enum: no, full, half, mixed,
unknown

Unclear why VatRate in OJP is an enumera-
tion.

OJP Enum will be changed in OJP 2.0, will
be percentage.

 To be ignored at the moment.

options.pricing.fare.class

type: string

doc: "in the future we'll set up an
enumeration of possible "fare
classes". For now it's free for-
mat."

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.TravelClass

Is of type NMToken with
enumeration

[all, first, second, third, busi-
ness, economy].

Mapping from string in TOMP-API to an
enumeration in OJP might be difficult.

If no classes specified, use "all", else for
public transport use "first" and "second"

TOMP-API: Until the "future" has arrived,
define the OJP enumeration as best prac-
tice in TOMP-API

options.booking.cus-
tomer.cardTypeStructure

OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.RequiredCard

Doc: "One or more traveller
cards that are needed for
purchase of this Fare-
Product. In most cases trav-
eller cards offer discounts,
f.e. BahnCard50 of
Deutsche Bahn."

In TOMP-API, the card type is described for
a specific customer.

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.ValidFor

is of type string with enu-
meration

[Adult, Child, Senior, Youth,
Disabled]

No validity element found in TOMP-API,
possibly TOMP-API only gives fare infor-
mation according to the request parameters
in CardTypeStructure.

 currently not needed.

Page 26

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.ValidityDuration

Doc: "Maximum duration of
FareProduct validity starting
with purchase of ticket or
begin of journey (ticket vali-
dation)."

Not needed, as no purchase of ticket is
done.

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.ValidiityDuration-
Text

Doc: "Textual description of
maximum validity duration"

Not needed.

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.ValidityTariffZones

Doc: "patial validity of Fare-
Product defined as list of
fare zones."

Tariff zones concept is not handled in
TOMP-API

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductValidi-
tyGroup.ValidityAreaText

Doc: "Textual description of
spatial validity."

 currently not needed.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductBook-
ingGroup.InfoUrl

Doc: "URL to information for
this FareProduct"

This information may not be of use for the
customer.

 currently not needed.

Page 27

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductBook-
ingGroup.SaleUrld

Doc: "URL to buy the Fare-
Product online"

With planning/inquiries, this is probably not
used. However, this might be filled in by the
transformer.

It is assumed that this URL may directly go
to the session and not only to the booking
service. However, this depends on the im-
plementation. As the provision of an orderid
is discouraged, it is not that important.

Possibly can be filled in by information ob-
tained from the service catalogue.

n/a OJP.FareRe-
sponse.FareRe-
sult.TripFareResult.Fare-
Product.FareProductBook-
ingGroup.BookingArrange-
ments

Not needed for fare information.

Possibly can be filled in by information ob-
tained from the service catalogue.

 currently not needed.

n/a OJP.FareResponse.Fare-
Result.TripFareResult.Stati-
cInfoUrl

Possibly can be filled in by information ob-
tained from the service catalogue.

 currently not needed.

pric-
ing.fare.parts.farePart.vatCoun-
tryCode

axLength: 2
minLength: 2
example: NL

n/a  currently not needed.

pricing.fare.parts.farePart.type

[FIXED, FLEX, MAX]

n/a This information might be of interest to the
customer and should be provided in OJP

 currently not needed.

pricing.fare.parts.farePart.kind

[DEFAULT, DISCOUNT,
SURGE]

Doc: is this the default price or
is this an additional part (dis-
count, price surge). In case of a
DISCOUNT, the amount must
always be negative and in case
of SURGE it must be positive.
This also means, that when
you're working with discounts or
surges, you have to deliver 2
fareparts, one for the default
price and one for the dis-
count/surge. This can be used
in combination with as well the
fixed price parts as with the flex
price parts.

n/a Does the handling of price change in fare,
due to discount, have to be communicated
to the customer? Can't it be delivered as an
own product?

 currently not needed.

Page 28

pricing.fare.parts.farePart.unit-
Type

[KM, SECOND, MINUTE,
HOUR, MILE, PERCENTAGE]

n/a unitType is only needed if type FLEX is
used.

Information of the costs when farePart type
FLEX is used, is useful for the customer to
get an idea on the price development.

 currently not needed.

pricing.fare.parts.farePart.unit n/a TOMP-API unit → The number of unitTypes
(amount of km, seconds, etc.).

 currently not needed.

pricing.fare.parts.farePart.scale-
From

Doc: number($float)
minimum: 0
in case of scaling, this is the
bottom value (f.x. in the first
hour 3 CAD, the scaleFrom
should contain 0 and the scale-
Type HOUR). When scaleTo is
used, but this field is missing, it
should be assumed it is a 0.

n/a We think that scaling information is not of
relevance to the customer.

 currently not needed.

pric-
ing.fare.parts.farePart.scaleTo

Doc: minimum: 0
the upper value of the scale (f.x.
3 CAD in the first hour, this field
should contain 1, scaleFrom 0
and scaleType HOUR)

n/a We think that scaling information is not of
relevance to the customer.

 currently not needed.

pricing.fare.parts.farePart.scale-
Type

Doc: string
Enum:
[KM, MILE, HOUR, MINUTE]

n/a We think that scaling information is not of
relevance to the customer.

 currently not needed.

pricing.fare.parts.farePart.mini-
mumAmount

n/a We think that this information is not of rele-
vance for the customer to get a fare/price
for a specific trip?

 currently not needed

pricing.fare.parts.farePart.maxi-
mumAmount

n/a We think that this information is not of rele-
vance for the customer to get a fare/price
for a specific trip?

 currently not needed.

pricing.fare.parts.farePart.meta n/a Empty in doc, not needed.

 currently not needed.

Page 29

pricing.fare.estimated

True, False

n/a No element in OJP FareStructure to define
if pricing is an estimation or not

CR OJP: Element should be added to the
OJPFareDelivery. Remark: Added to OJP
2.0

 mainAssetType n/a AssetTypes are handled in accessibility re-
quest and not in fare.

 currently not needed.

extraData n/a  currently not needed.

3.2.1 Example of a TOMP-API planning/inquires response
{
 "validUntil": "2020-01-19T12:00:02Z",
 "options": [
 {
 "id": "1231231112231",
 "legs": [
 {
 "id": "1231231112231",
 "from": {
 "coordinates": {
 "lng": 5.1,
 "lat": 20.2
 }
 },
 "to": {
 "coordinates": {
 "lat": 5.2,
 "lng": 20.2
 },
 },
 "departureTime": "2020-01-19T12:00:02Z",
 "arrivalTime": "2020-01-19T12:57:02Z",
 "assetType": {
 "id": "bus1",
 "assetClass": "BUS",
 "assetSubClass": "bus"
 },
 legSequenceNumber: 1,
 "pricing": {
 "estimated": false,
 "parts": [
 {
 "name": "Kilometerbasiert normal",
 "amount": 17,
 "amountExVat": 15,
 "currencyCode": "CHF",
 "class": "economy"
 }
]
 }
 }
],
 "state": "NEW"
 }

Page 30

]
}

CR TOMP-API: TOMP-API contains a bookingState in the booking object. When calling the /plan-
ning/inquiries endpoint, however, none of the existing ENUM values makes sense. We therefore
suggest that an additional value in the ENUM is introduced in the TOMP-API standard for this kind
of response. A suitable name would be SPECULATIVE or NONE).

Pricing can and should be added also on the level of booking.

Be aware that multiple bookings can be returned. For each booking, a FareResult must be re-
turned.

3.2.2 OJPFareDelivery

The code example on the following page provides an example of the OJPFareDelivery generated
from the TOMP-API response.

In some cases, pickup and dropoff locations may be different from the coordinates added. This
needs a refinement request with some recalculations. Also, the TOMP-API service may add foot-
paths in this case. Either the transformer or the OJP system will have to deal with it. Currently, we
will remove them.

The content of BookingArrangement cannot be filled in from /planning/inquiries. This information
has to come either from the service catalogue or from different TOMP-API requests.
<?xml version="1.0" encoding="UTF-8"?>
<ojp:OJPFareDelivery xmlns:ojp="http://www.vdv.de/ojp" xmlns:siri="http://www.siri.org.uk/siri"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLoca-
tion="http://www.siri.org.uk/siri ../../../OJP.xsd">
 <siri:ResponseTimestamp>2001-12-17T09:30:47Z</siri:ResponseTimestamp>
 <siri:Status>true</siri:Status>
 <siri:ValidUntil>2001-12-18T09:30:47Z</siri:ValidUntil>
 <ojp:Problem>
 <ojp:Type>OJPGENERIC_OTHER</ojp:Type>
 </ojp:Problem>
 <ojp:FareResponseContext>
 <ojp:Operators>
 <ojp:Operator>
 <siri:OperatorRef>ch:1:sboid:123123</siri:OperatorRef>
 <siri:OperatorName>Mybuxi</siri:OperatorName>
 </ojp:Operator>
 <ojp:Operator>
 <siri:OperatorRef>ch:1:sboid:11</siri:OperatorRef>
 <siri:OperatorName>SBB NOVA</siri:OperatorName>
 </ojp:Operator>
 </ojp:Operators>
 </ojp:FareResponseContext>
 <ojp:FareResult>
 <ojp:Id>1231231112231</ojp:Id>
 <ojp:TripFareResult>
 <ojp:FromLegIdRef>1</ojp:FromLegIdRef>
 <ojp:ToLegIdRef>1</ojp:ToLegIdRef>
 <ojp:FareProduct>
 <ojp:FareProductId>mybuxi10001231</ojp:FareProductId>
 <ojp:FareProductName>Kilometerbasiert normal</ojp:FareProductName>
 <ojp:FareAuthorityRef>ch:1:sboid:123123</ojp:FareAuthorityRef>
 <ojp:FareAuthorityText>Mybuxi</ojp:FareAuthorityText>
 <ojp:NetPrice>15</ojp:NetPrice>

Page 31

 <ojp:Currency>CHF</ojp:Currency>
 <ojp:TravelClass>economy</ojp:TravelClass>
 <ojp:SaleUrl>
 <ojp:Label>
 <ojp:Text>MyBuxi</ojp:Text>
 </ojp:Label>
 <ojp:Url>https://www.mybuxi.ch/booking</ojp:Url>
 </ojp:SaleUrl>
 <ojp:BookingArrangements>
 <ojp:BookingArrangement>
 <ojp:BuyWhen>
 <ojp:PurchaeMoment>onReservation</ojp:PurchaeMoment>
 </ojp:BuyWhen>
 <ojp:MinimumBookingPeriod>PT10M</ojp:MinimumBookingPeriod>
 </ojp:BookingArrangement>
 </ojp:BookingArrangements>
 </ojp:FareProduct>
 </ojp:TripFareResult>
 </ojp:FareResult>
 <ojp:FareResult>
 <ojp:Id>123123123</ojp:Id>
 <ojp:TripFareResult>
 <ojp:FromLegIdRef>2</ojp:FromLegIdRef>
 <ojp:ToLegIdRef>2</ojp:ToLegIdRef>
 <ojp:FareProduct>
 <ojp:FareProductId>öV</ojp:FareProductId>
 <ojp:FareProductName>ÖV</ojp:FareProductName>
 <ojp:FareAuthorityRef>ch:1:sboid:11</ojp:FareAuthorityRef>
 <ojp:FareAuthorityText>NOVA</ojp:FareAuthorityText>
 <ojp:NetPrice>51</ojp:NetPrice>
 <ojp:Currency>CHF</ojp:Currency>
 <ojp:TravelClass>second</ojp:TravelClass>
 <ojp:SaleUrl>
 <ojp:Label>
 <ojp:Text>NOVA</ojp:Text>
 </ojp:Label>
 <ojp:Url>https://www.sbb.ch/NOVA</ojp:Url>
 </ojp:SaleUrl>
 </ojp:FareProduct>
 <ojp:FareProduct>
 <ojp:FareProductId>öV</ojp:FareProductId>
 <ojp:FareProductName>ÖV</ojp:FareProductName>
 <ojp:FareAuthorityRef>ch:1:sboid:11</ojp:FareAuthorityRef>
 <ojp:FareAuthorityText>NOVA</ojp:FareAuthorityText>
 <ojp:NetPrice>75</ojp:NetPrice>
 <ojp:Currency>CHF</ojp:Currency>
 <ojp:TravelClass>first</ojp:TravelClass>
 <ojp:SaleUrl>
 <ojp:Label>
 <ojp:Text>NOVA</ojp:Text>
 </ojp:Label>
 <ojp:Url>https://www.sbb.ch/NOVA</ojp:Url>
 </ojp:SaleUrl>
 </ojp:FareProduct>
 </ojp:TripFareResult>
 </ojp:FareResult>
</ojp:OJPFareDelivery>

Page 32

3.3 Conclusions

OJPFareRequest can be supported and answered by a service based on a TOMP-API /planning/in-
quiries endpoint. However, some information will be lost.

To facilitate the mapping service, some changes to OJP and TOMP-API should be implemented.
This will limit greatly the amount of logic in the mapping service. We plan to propose these changes
as change requests to the respective boards.

